Как солнце блеском своим затмевает звезды, так и ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».
«Пчелиный рой»
Предназначена игра для детей старшего возраста и подростков. количество игроков не ограничивается, но желательно около 5 человек. На решение эвристической задачи отводится один час. Выигравшим считается тот, кто первым найдет правильный ответ.
Пчелы в числе, равном квадратному корню из половины всего их роя, сели на куст жасмина, оставив позади себя 8/9 роя. И только одна из пчелок того же роя кружится возле лотоса, привлеченная жужжанием подруги, неосторожно попавшей в западню сладко пахнущего цветка. Сколько всего пчел было в рое?
Решение.
Обозначим искомую численность роя через x, тогда уравнение будет иметь вид:
квадратный корень из дроби x/2+8/9+2=x.
Приводим это уравнение в более простую форму, вводя вспомогательное неизвестное:
y = квадратный корень из дроби x/2.
тогда x=2х(y в квадрате), а уравнение будет иметь такой вид:
y+16хy (в квадрате) /9+2=2хy (в квадрате), или 2хy (в квадрате) – 9хy – 18=0
Решив это уравнение, получаем два значения для y:
y(первый) = 6, y(второй) = —3/2.
Соответствующие значения для x:
x(первый) = 72, x(второй) = 4,5.
Так как число пчел должно быть целое и положительное, то удовлетворяет задаче только первый корень: рой состоял из 72 пчел. Проверим:
квадратный корень из дроби 72/2+8/9х72+2=6+64+2=72.
«День рождения»
Игра предназначена для детей старшего возраста и подростков. количество игроков не ограничивается, но желательно около 5 человек.